/* tree.h -- AVL trees (in the spirit of BSD's 'queue.h') -*- C -*- */ /* Copyright (c) 2005 Ian Piumarta * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the 'Software'), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, and/or sell copies of the * Software, and to permit persons to whom the Software is furnished to do so, * provided that the above copyright notice(s) and this permission notice appear * in all copies of the Software and that both the above copyright notice(s) and * this permission notice appear in supporting documentation. * * THE SOFTWARE IS PROVIDED 'AS IS'. USE ENTIRELY AT YOUR OWN RISK. */ /* This file defines an AVL balanced binary tree [Georgii M. Adelson-Velskii and * Evgenii M. Landis, 'An algorithm for the organization of information', * Doklady Akademii Nauk SSSR, 146:263-266, 1962 (Russian). Also in Myron * J. Ricci (trans.), Soviet Math, 3:1259-1263, 1962 (English)]. * * An AVL tree is headed by pointers to the root node and to a function defining * the ordering relation between nodes. Each node contains an arbitrary payload * plus three fields per tree entry: the depth of the subtree for which it forms * the root and two pointers to child nodes (singly-linked for minimum space, at * the expense of direct access to the parent node given a pointer to one of the * children). The tree is rebalanced after every insertion or removal. The * tree may be traversed in two directions: forward (in-order left-to-right) and * reverse (in-order, right-to-left). * * Because of the recursive nature of many of the operations on trees it is * necessary to define a number of helper functions for each type of tree node. * The macro TREE_DEFINE(node_tag, entry_name) defines these functions with * unique names according to the node_tag. This macro should be invoked, * thereby defining the necessary functions, once per node tag in the program. * * For details on the use of these macros, see the tree(3) manual page. */ #ifndef __tree_h #define __tree_h #define TREE_DELTA_MAX 1 #define TREE_ENTRY(type) \ struct { \ struct type *avl_left; \ struct type *avl_right; \ int avl_height; \ } #define TREE_HEAD(name, type) \ struct name { \ struct type *th_root; \ int (*th_cmp)(struct type *lhs, struct type *rhs); \ } #define TREE_INITIALIZER(cmp) { 0, cmp } #define TREE_DELTA(self, field) \ (( (((self)->field.avl_left) ? (self)->field.avl_left->field.avl_height : 0)) \ - (((self)->field.avl_right) ? (self)->field.avl_right->field.avl_height : 0)) /* Recursion prevents the following from being defined as macros. */ #define TREE_DEFINE(node, field) \ \ struct node *TREE_BALANCE_##node##_##field(struct node *); \ \ struct node *TREE_ROTL_##node##_##field(struct node *self) \ { \ struct node *r= self->field.avl_right; \ self->field.avl_right= r->field.avl_left; \ r->field.avl_left= TREE_BALANCE_##node##_##field(self); \ return TREE_BALANCE_##node##_##field(r); \ } \ \ struct node *TREE_ROTR_##node##_##field(struct node *self) \ { \ struct node *l= self->field.avl_left; \ self->field.avl_left= l->field.avl_right; \ l->field.avl_right= TREE_BALANCE_##node##_##field(self); \ return TREE_BALANCE_##node##_##field(l); \ } \ \ struct node *TREE_BALANCE_##node##_##field(struct node *self) \ { \ int delta= TREE_DELTA(self, field); \ \ if (delta < -TREE_DELTA_MAX) \ { \ if (TREE_DELTA(self->field.avl_right, field) > 0) \ self->field.avl_right= TREE_ROTR_##node##_##field(self->field.avl_right); \ return TREE_ROTL_##node##_##field(self); \ } \ else if (delta > TREE_DELTA_MAX) \ { \ if (TREE_DELTA(self->field.avl_left, field) < 0) \ self->field.avl_left= TREE_ROTL_##node##_##field(self->field.avl_left); \ return TREE_ROTR_##node##_##field(self); \ } \ self->field.avl_height= 0; \ if (self->field.avl_left && (self->field.avl_left->field.avl_height > self->field.avl_height)) \ self->field.avl_height= self->field.avl_left->field.avl_height; \ if (self->field.avl_right && (self->field.avl_right->field.avl_height > self->field.avl_height)) \ self->field.avl_height= self->field.avl_right->field.avl_height; \ self->field.avl_height += 1; \ return self; \ } \ \ struct node *TREE_INSERT_##node##_##field \ (struct node *self, struct node *elm, int (*compare)(struct node *lhs, struct node *rhs)) \ { \ if (!self) \ return elm; \ if (compare(elm, self) < 0) \ self->field.avl_left= TREE_INSERT_##node##_##field(self->field.avl_left, elm, compare); \ else \ self->field.avl_right= TREE_INSERT_##node##_##field(self->field.avl_right, elm, compare); \ return TREE_BALANCE_##node##_##field(self); \ } \ \ struct node *TREE_FIND_##node##_##field \ (struct node *self, struct node *elm, int (*compare)(struct node *lhs, struct node *rhs)) \ { \ if (!self) \ return 0; \ if (compare(elm, self) == 0) \ return self; \ if (compare(elm, self) < 0) \ return TREE_FIND_##node##_##field(self->field.avl_left, elm, compare); \ else \ return TREE_FIND_##node##_##field(self->field.avl_right, elm, compare); \ } \ \ struct node *TREE_MOVE_RIGHT(struct node *self, struct node *rhs) \ { \ if (!self) \ return rhs; \ self->field.avl_right= TREE_MOVE_RIGHT(self->field.avl_right, rhs); \ return TREE_BALANCE_##node##_##field(self); \ } \ \ struct node *TREE_REMOVE_##node##_##field \ (struct node *self, struct node *elm, int (*compare)(struct node *lhs, struct node *rhs)) \ { \ if (!self) return 0; \ \ if (compare(elm, self) == 0) \ { \ struct node *tmp= TREE_MOVE_RIGHT(self->field.avl_left, self->field.avl_right); \ self->field.avl_left= 0; \ self->field.avl_right= 0; \ return tmp; \ } \ if (compare(elm, self) < 0) \ self->field.avl_left= TREE_REMOVE_##node##_##field(self->field.avl_left, elm, compare); \ else \ self->field.avl_right= TREE_REMOVE_##node##_##field(self->field.avl_right, elm, compare); \ return TREE_BALANCE_##node##_##field(self); \ } \ \ void TREE_FORWARD_APPLY_ALL_##node##_##field \ (struct node *self, void (*function)(struct node *node, void *data), void *data) \ { \ if (self) \ { \ TREE_FORWARD_APPLY_ALL_##node##_##field(self->field.avl_left, function, data); \ function(self, data); \ TREE_FORWARD_APPLY_ALL_##node##_##field(self->field.avl_right, function, data); \ } \ } \ \ void TREE_REVERSE_APPLY_ALL_##node##_##field \ (struct node *self, void (*function)(struct node *node, void *data), void *data) \ { \ if (self) \ { \ TREE_REVERSE_APPLY_ALL_##node##_##field(self->field.avl_right, function, data); \ function(self, data); \ TREE_REVERSE_APPLY_ALL_##node##_##field(self->field.avl_left, function, data); \ } \ } #define TREE_INSERT(head, node, field, elm) \ ((head)->th_root= TREE_INSERT_##node##_##field((head)->th_root, (elm), (head)->th_cmp)) #define TREE_FIND(head, node, field, elm) \ (TREE_FIND_##node##_##field((head)->th_root, (elm), (head)->th_cmp)) #define TREE_REMOVE(head, node, field, elm) \ ((head)->th_root= TREE_REMOVE_##node##_##field((head)->th_root, (elm), (head)->th_cmp)) #define TREE_DEPTH(head, field) \ ((head)->th_root->field.avl_height) #define TREE_FORWARD_APPLY(head, node, field, function, data) \ TREE_FORWARD_APPLY_ALL_##node##_##field((head)->th_root, function, data) #define TREE_REVERSE_APPLY(head, node, field, function, data) \ TREE_REVERSE_APPLY_ALL_##node##_##field((head)->th_root, function, data) #define TREE_INIT(head, cmp) do { \ (head)->th_root= 0; \ (head)->th_cmp= (cmp); \ } while (0) #endif /* __tree_h */