
Analysis of the M6809 instruction set 

by JOEL BONEY 
Motorola, Inc. 
Austin, Texas 

ABSTRACT 

The M6809 has now been in the marketplace for about 3 years and is one of the 
most popular midrange microcomputers. With 3 years of history, it is now possible 
to analyze many of the existing M6809 programs to see how the computer is actually 
used. 

This paper includes data I took regarding instruction-set and addessing-mode 
usage on existing M6809 programs. 1 The specific information should be of interest 
to M6809 programmers and to future computer architects who wish to create similar 
machines. Beyond the specific M6809 information, however, there are some basic 
usage trends that are apparent in almost all Von Neuman architectures. Therefore, 
the information in this paper will be of interest to most users of microprocessors. 

The data point out to programmers and system engineers what attributes of a 
computer's instruction set really affect the memory efficiency and throughput and 
what attributes don't matter. With this knowledge the programmer/system engineer 
should be better able to evaluate a microcomputer before he selects one for his 
project. 

503 

J ••••• 

From the collection of the Computer History Museum (www.computerhistory.org)



From the collection of the Computer History Museum (www.computerhistory.org)



INTRODUCTION 

In the spring of 1977 several of us at Motorola felt it was time 
to plan the follow-on part to the successful M6800 micro­
processor. We were not the first to envision such a part, but 
we were the first to actually have the time and resources to 
proceed with the design. The new part was labeled the M6809. 
Terry Ritter and I were assigned the task of defining the new 
architecture. 

As part of the preliminary design of the M6809 we did an 
analysis of the then existing programs written for the M6800. 
Much of the data we gathered from this analysis was very 
helpful in the design of the M6809. 

Several years have now passed since the introduction of the 
M6809, and I felt it was time to analyze how the M6809 is 
actually being used. I hope these data will be as useful to the 
computer architects that follow us as the M6800 data were to 
us. Further, I hope these data will enable programmers and 
system engineers to be more intelligent in their selection of 
microcomputers for their applications. 

GOALS AND CONSTRAINTS OF THE M6809 
PROJECT 

Every design project in industry begins with some goals that 
are shared by the designers, the marketers and, hopefully, by 
the customer. Every project also has some design constraints 
that must be adhered to in order to design a product that is 
producible. To understand the analysis of the M6809 that 
follows, it is necessary to have some understanding of the 
goals and constraints of the M6809 design project. 

A personal goal held by both my coarchitect Terry Ritter 
and me for the M6809 project was that we wanted to prove 
that it was possible to produce an inexpensive microprocessor 
that was also easy to program. We felt that too many of the 
existing microprocessors were needlessly difficult to program. 
We suspected that the reason was not that it was impossible to 
make a microcomputer that was easy to program, but, rather, 
that the architects of the early microprocessors were generally 
more hardware oriented than software oriented. 

Our experience told us that the consistency (regularity or 
orthogonality) of the instruction set was one of the features of 
a computer that made it easy to program. We wanted all the 
instructions, addressing modes, and system resources, such as 
registers, to be treated consistently. Analysis of the M6800 
showed that instructions such as add B to A were rarely used 
despite the fact that they provided a useful function with 
better than average performance. The reason they were not 
used was that these instructions were unusual; they behaved 
differently than other instructions. It was our observation that 

M6809 Instruction Set Analysis 505 

programmers will not use instructions that are hard to use or 
that require the programmer to remember peCUliarities about 
their execution. 

The second goal of the design team was to support the 
improvements we saw rapidly taking place in the design of 
microprocessor software. We wanted the architecture to effi­
ciently support modern block-structured high-level languages. 
Features such as stack addressing were included for this pur­
pose. We also wanted to better support assembly language 
with the ability to write recursive, reentrant programs and 
position-independent programs. 

Another goal was to improve significantly the performance 
of the M6809 as compared to that of the M6800. 

Along with goals must come some constraints. We felt that 
the M6809 must be compatible with the M68001M6801 at 
either the assembler-source or machine-code level. The 
machine-code level was preferable. Because it was impossible, 
however, to get the necessary throughput improvements and 
remain machine-code compatible, we selected assembler 
source-code compatibility. 

BRIEF OVERVIEW OF THE M6809 ARCHITECTURE 

To understand the data analysis that follows, it will be helpful 
to have a working knowledge of the M6809 architecture. The 
following sections describe the programmer's model, the in­
struction classes, and the addressing modes of the M6809. 

Programmer's Model 

The M6809 is a l~-address, 8-bit Von Neuman architecture 
microcomputer. Figure 1 is the programmer's model of the 
M6809. 

The A and B accumulators are general purpose 8-bit accu­
mulators that can be considered as one 16-bit accumulator for 
16-bit operations. When used as one 16-bit accumulator they 
are called the D accumulator. 

The X and Y index registers are general-purpose index 
registers used in the various forms of indexed addressing. The 
U and S registers are also index registers, but they have the 
additional quality that they can be used as stack pointers. The 
U register is called the user stack pointer. The S register is the 
hardware stack pointer and is also used by the hardware to 
store machine state during subroutine calls and interrupts. 

The program counter on the M6809 is 16 bits wide, thus 
supporting an address space of 65,536 bytes. All addresses on 
the M6809 are 16 bits wide. 

The address field of an instruction with direct addressing on 
the M6809 is only 8 bits wide. The direct page register is a base 

From the collection of the Computer History Museum (www.computerhistory.org)



506 National Computer Conference, 1983 

A accumulator B accumulator 

X index register 

Y index register 

U stack pointer/index register 

S stack pointer/index register 

program counter 

direct page register 

condition code register 

Figure I-M6809 programmer's model 

register that provides the most significant 8 bits of address for 
direct addressing. The condition code register contains the 
results from the last arithmetic or logical operation as well as 
interrupt masks and other control bits. 

Instruction Classes 

The 6809 has the following seven major classes of instructions: 

1. Arithmetic, logical, load and store 
2. Read / modify / write 
3. Conditional branch 
4. Load effective address 
5. Push / pull 
6. Control transfer 
7. Miscellaneous 

The arithmetic, logical, and load and store instructions make 
up the largest set of instructions. They are H address in­
structions that get one of their operands from memory and the 
other from an accumulator, and they store the result, if any, 
in the accumulator. 

The read/modify/write instructions read a memory location 
or accumulator, perform some operation on its contents (e.g., 
clear, shift, increment), and store the result back to the same 
memory location or accumulator. 

The conditional branch instructions are used for conditional 
program control transfer. 

The load-effective-address instructions evaluate the effec­
tive address of an indexed addressing-mode instruction and 
return the effective address to an index register. This makes 
the powerful address-calculation hardware already present for 
indexed addressing available for address manipulation. 

The push/pull instructions allow one or several of the regis­
ters to be pushed or pulled on the stacks pointed to by the U 
or S stack pointers. A single push or pull instruction can push 
or pull from 1 to 8 registers. 

The control transfer instructions include the subroutine 
calls as well as the unconditional jumps and branches. The 
miscellaneous category includes instructions such as sign ex­
tend, no-operation, and transfer register to register. Their 
addressing mode, if any, is inherent. 

Addressing Modes 

The M6809 supports a variety of addressing modes. There 
are seven major types with several SUbtypes: 

1. Inherent 
2. Accumulator 
3. Register 
4. Immediate 
5. Absolute 

Extended 
Direct 

6. Relative 
Long 
Short 

7. Indexed 
Constant offset 
Constant offset from the PC 
Accumulator offset 
Auto increment / decrement 

Inherent addressing includes those instructions that have no 
addressing options. Accumulator addressing is similar to in­
herent except that an accumulator is specified (e.g., CLRA, 
CLRB). Some M6809 instructions specify one or several of 
the registers as the operands (e.g., TFR D,X-transfer D to 
X). This is called register addressing. In immediate addressing 
the source operand is assumed to be in the memory location 
immediately following the current opcode. The M6809 sup­
ports both 8-bit and 16-bit immediate values. 

In absolute addressing all or part of the absolute memory 
address is included in the instruction. In extended addressing 
the full 16-bit address is included in the instruction. In direct 
addressing only the lower 8 bits of the address are included in 
the instruction. The upper 8 bits of the address are supplied 
by the direct page register. 

Relative addressing is used for branches. There are both 
8-bit and 16-bit relative offsets. 

Many of the new features supported by the M6809 lie in its 
greatly expanded indexed addressing modes. In the constant 
offset indexed addressing modes a constant value of length 0, 

From the collection of the Computer History Museum (www.computerhistory.org)



5,8, or 16 bits is summed with an index register to obtain the 
effective address used to fetch the operand. 

Constant offset from the program counter (program 
counter relative) works in much the same way except the 
program counter is used as the index register. This addressing 
mode is used most often by the load-effective-address in­
struction to find the starting address of tables in a position­
independent program. 

In accumulator offset mode the effective address is the sum 
of the signed accumulator and the specified index register. 
The original contents of the index register and the accumu­
lator are unchanged by this addressing mode. 

In auto increment mode the contents of the specified index 
register are used as the effective address; then they are in­
cremented by 1 or 2 (postincrement). In auto decrement the 
contents of the index register specified are first decremented 
by 1 or 2 and then used as the effective address (predecre­
ment). In both cases the contents of the index register are 
permanently changed. 

All the indexed addressing modes and the extended ad­
dressing mode of the M6809 provide for an additional level of 
indirection. That is, the original effective address calculated 
by the addressing mode can be used as the address of another 
16-bit value that specifies the final effective address. 

STATIC VERSUS DYNAMIC ANALYSIS OF 
ARCHITECTURES 

Theie aie essentially two types of analyses that can be per­
formed on an instruction set-static and dynamic. In static 
analysis, either the source code or the object code of a pro­
gram or programs is analyzed to determine the frequency of 
appearance of various instructions, addressing modes, regis­
ters, and so on. In dynamic analysis, data are taken during the 
actual execution of a program and are used to determine the 
frequency of execution of an instruction, addressing mode, 
and so on. 

Both types of data are useful for specific purposes. The 
static data can lead to improvements in future architectures 
that will reduce the size of the average program. The dynamic 
data can lead to a reduction in the execution time of the 
average program. These two improvements are also some­
what related. If a program is smaller, it generally has to fetch 
fewer bytes of opcode and, hence, runs faster. 

STATIC ANALYSIS OF THE M6809 

Instruction Classes 

To make the data as useful as possible, I analyzed static 
code from several different classes of programs. I tried to 
balance the amount of code in each class so that one class of 
program would not bias the data. I classified the programs 
into the following classes: 

M6809 Instruction Set Analysis 507 

Program Class 
Compiler-generated code 
Compiler code 
Application code 
Monitor code 
Numeric code 

Average Instruction Size 

Number of Bytes 
14549 
7695 

26305 
6293 
7135 

61977 

One parameter of interest is the average size of anM6809 
instruction. The data can be useful when estimating the 
memory needed for an application. The size of the average 
instruction for the various program classes and for all classes 
combined is given in the list that follows. 

Class 
Numeric 
Monitor 
Compiler 
Application 
Compiled 

All 

Average Size 
2.16 bytes 
2.27 bytes 
2.30 bytes 
2.40 bytes 
2.43 bytes 

2.35 bytes 

If an M6809 programmer can estimate the approximate 
number of source lines he will write, he can use 2.35 to esti­
mate his total memory requirements. 

Most Frequently Appearing Single Opcodes 

There are two ways of looking at the static data. One is to 
count the percentage of times an instruction (opcode plus 
additional addressing bytes) appears versus the total number 
of instructions. I call this the percentage by count. The other 
is to count the percent of the total bytes actually taken by an 
instruction. I call this the percentage by bytes. 

Table I is the data from the 10 most frequently appearing 
single opcodes in the concatenation of all of the static data. It 
is interesting to note that the top 10 opcodes represent 37.4% 
of all instructions. Since there are 266 possible opcodes in the 
M6809, these 10 opcodes are only 3.76% of all possible op-

TABLE I-Top 10 most frequently appearing M6809 opcodes 

Opcode Instr. By Count % By Bytes % 

17 lbsr 2307 8.76 6921 11.17 
30 leax 922 3.50 2653 4.28 
34 pshs 910 3.46 1820 2.94 
86 Ida immed. 906 3.44 1812 2.92 
20 bra 877 3.33 1754 2.83 
8e ldx immed. 862 3.27 2586 4.17 
26 bne 804 3.05 1608 2.59 
27 beq 800 3.04 1600 2.58 
ed std indexed 739 2.81 1584 2.56 
cc ldd immed. 722 2.74 2166 3.49 

-
Total 37.40 39.53 

From the collection of the Computer History Museum (www.computerhistory.org)



508 National Computer Conference, 1983 

codes. Although this may be a surprise to those readers who 
have never seen instruction-usage data before, it is consistent 
with most modern architectures. 

The top three opcodes are new M6809 instructions that 
were not available on the :t-y16800. They account for 15.72% 
of all opcodes. Clearly there was a need for these new in­
structions. 

Most Frequently Appearing Opcodes by Class 

Although it is useful to know which individual opcodes 
occur most frequently, it is more useful to have the data 
broken down into slightly larger classes. Table II contains the 
top 10 classes sorted by count for the concatenation of all the 
static data. 

The first 6 classes account for over 52% of all instructions 
and the top 10 for 66.69%. We can conclude that the M6809 
behaves like most computers in that a very few instruction 
types account for most of the instructions.2 Furthermore, 
most of the instructions are in the load-store category. 
(Pushes and pulls are also classified as loads and stores in 
some literature.) 

Most Frequently Appearing Instructions by Large Class 

We can take an even larger view of the instruction classes. 
These data are useful for comparing the usage of the M6809 
to other computers. Table III contains these data along with 
static data gathered by Leonard Shustek for the IBM 370 and 
PDP-11. 3 

From the data in Table III we can deduce that the M6809 is 
not much different from other Von Neuman machines. All 
three machines have a high percentage of loads and stores, 
subroutine calls, conditional branches, and compares/tests. 
Furthermore, the amount of arithmetic and logical instruc­
tions is low. 

What this tells the system designer who is trying to evaluate 
the memory efficiency of a microcomputer (remember we are 
dealing with static data here) is that the overall size of the 
program will be determined by a few instruction classes. Also, 
since the loads and stores are heavy users of the addressing 

TABLE II-Top 10 classes of M6809 instructions 

Class Count % Bytes % 

16-bit loads 4114 15.62 11291 18.22 
8-bit loads 2868 10.89 6144 9.91 
Long branch subr. 2307 8.76 6921 11.17 
Load eff. addr. 1708 6.49 4629 7.47 
Push 1426 5.42 2852 4.60 
Store 16-bits 1376 5.23 3155 5.09 
Store 8-bits 1219 4.63 2991 4.83 
Branch always 877 3.33 1754 2.83 
Compare 860 3.27 1792 2.89 
Branch not equal 804 3.05 1608 2.59 -
Total 66.69 69.60 

TABLE III-Comparison of static data 

Class M6809 IBM 370 

Load/store 50.83 48.00 
Cal! 12.49 5.50 
Cond branch 10.07 15.30 
Control transfer 5.26 ? 
Cmp/tst 5.63 8.80 
Arith/logical 4.04 3.50* 
Other 11.68 18.90 

*Subtract only. 
tControl transfer included in conditional branch. 
:j:Add only. 

PDP-11 

32.80 
6.30 

20.10 
t 

6.50 
3.00* 

26.30 

modes, the byte efficiency of the addressing modes will 
greatly effect the efficiency of the architecture. 

Static Appearance of Addressing Modes 

Another major area of interest is the use of the addressing 
modes of a computer. Table IV shows the addressing mode 
statistics for the concatenation of all the static data. 

Indexed addressing is by far the most frequently appearing 
addressing mode because many of the unique features of the 
M6809 addressing modes are hidden under the umbrella of 
indexed addressing. For this reason indexed addressing is dis­
cussed in more detail in a later paragraph. 

The relative addressing modes (short and long) account for 
25.01 % of all addressing modes. This indicates that M6809 
programmers are using the relative rather than the absolute 
control transfers and subroutine calls. In short, programmers 
are writing a lot of position-independent codes for the M6809. 
The relatively small amounts of extended and direct absolute 
addressing also back up this conclusion. 

Indexed addressing static statistics 

Since indexed addressing represents about 72% of all the 
addressing modes that reference memory (direct, extended, 
and indexed), we now spend some time looking at the indexed 
addressing data. Table V breaks the indexed addressing down 
into its subgroups. The basic subgroups are the no offset, the 

TABLE IV-M6809 static addressing mode usage 

Addressing Mode Count % 

Indexed 7371 27.99 
Immediate 5132 19.49 
Short relative 3532 13.41 
Inherent 3466 13.16 
Long relative 3054 11.60 
Extended 1937 7.36 
Direct 958 3.64 
Accumulator b 456 1.73 
Accumulator a 424 1.61 

Indirect 175 0.66 

From the collection of the Computer History Museum (www.computerhistory.org)



Table V-Static indexed addressing data 

Addressing Mode Number % of total 

No offset (offset = 0) 961 13.04 

5-bit offset 3940 53.45 
8-bit offset 631 8.56 
16-bit offset 572 7.76 
8-bit offset from PC 92 1.25 
16-bit offset from PC 139 1.89 

a accumulator offset 85 1.15 
b accumulator offset 99 1.34 
d accumulator offset 113 1.53 

Auto increment by 1 286 3.88 
Auto increment by 2 120 1.63 
Auto decrement by 1 43 0.58 
Auto decrement by 2 273 3.70 

Extended indirect 17 0.23 

Average additional bytes for indexed = 1.17 

constant offset, the register offset, the auto increment/ 
decrement, and extended indirect. 

The constant offset varieties account for 72.91% of the 
total. If no offset is included with the constant offset sub­
group, we find that 85.95% of the indexed instructions are of 
a simple type. The program that took the data also calculated 
the average number of bytes that are added for each indexed 
addressing mode above the base opcode. The average is 1.17 
bytes. Since the minimum possible is 1.0 bytes, this is a very 
encouraging statistic. The code-size penalty for providing all 
the new M6809 indexed addressing modes is minimal. This is 
good news. As stated previously, the memory efficiency of the 
loads and stores and the addressing modes has the greatest 
influence on the memory efficiency of the whole architecture. 

DYNAMIC ANALYSIS OF THE M6809 

Although the static data used in the previous sections are 
useful in predicting the size of a program, data taken while a 
program is actually executing are more useful in determining 
the throughput of a computer. Unfortunately, reliable dy­
namic data are much harder to obtain than are static data; 
hence, there are few dynamic data for microprocessors. 

There are two basic ways of collecting dynamic data. One 
is to build special high-speed hardware to monitor the in­
struction execution of a computer. This method has the ad­
vantage of being real time but has the disadvantage of being 
very expensive. To reduce hardware costs, it is usually neces­
sary for the hardware to take only snapshots of a fixed number 
of cycles. It is hoped that these snapshots will faithfully repre­
sent the execution characteristics of the whole program. 

The second method is to run programs using a simulator. 
The simulator can be instrumented to collect the data cycle by 
cycle. The problem with a simulator is that it slows down the 
program's execution so much that the statistics may become 
warped. This is especially true for real-time programs. In fact, 
many real-time programs won't run on a simulator at all. 

M6809 Instruction Set Analysis 509 

Furthermore, the simulator may have problems simulating the 
110 and interrupt portions of the programs. 

I used the simulator method for collecting the data 
presented in the next sections. 

Program Mix 

Because of the limitations just mentioned, I was able to 
analyze only five programs dynamically. The are shown in the 
list that follows. 

Program 
Chess 
Ed 

Description 
Chess playing program 
Line editor 
Small monitor 

Source Language 
Assembler 
Assembler 
C Mon 

Mopet 
M6839 

Automatic test generator Pascal, Assembler 
Floating point package Structured Assembler 

Although I would like to have analyzed more programs, 
I feel these programs are representative. However, I did not 
feel justified in concatenating all the data into one data set 
as I did with the static data. In the following sections the 
dynamic data are presented independently for each simulated 
program. 

The number of instructions and cycles in the simulation for 
each program are the following: 

Program Instructions Cycles 
Mopet 451,131 2,015,244 
Chess 385,698 1,797,514 
M6839 163,370 719,976 
Ed 149,521 702,876 
Mon 86,406 477,887 

Total 1,236,126 5,713,497 

Cycles Per Instruction and MIPS 

A metric of interest for a processor is the number of cycles 
taken by the average instruction and the millions of in­
structions per second (MIPS) for each program. These data 
are contained in the list that follows. 

Program Avg. Cycles/Instr. MIPS at 2 MHz 
M6839 4.41 .454 
Mopet 4.47 .447 
Chess 4.66 .429 
Ed 4.70 .425 
Mon 5.53 .362 

Average 4.75 .423 

The data are fairly consistent, and a MIPS rate of approxi­
mately .4 can be used by a programmer to successfully esti-. 
mate the execution speed of most M6809 programs. 

A note on MIPS is in order here. The actual amount of 
work (throughput) done by a computer is a function of both 

From the collection of the Computer History Museum (www.computerhistory.org)



510 National Computer Conference, 1983 

the MIPS and the size or amount of data actually operated on 
during each instruction. For example, a 1-MIP 32-bit machine 
will have about four times the throughput of a 1-MIP 8-bit 
machine. The M6809 is somewhere between an 8-bit machine 
and a 16-bit machineo 

Most Frequently Executed Opcodes by Class 

Using the same classes of opcodes as described in the static 
data, we can determine what classes of instructions are most 
frequently executed. Table VI is the union of the top 10 
classes for each program. Note that it takes 24 separate classes 
to get the union of the top 10 classes. This indicates that the 
dynamic data are not as consistent as the static data, where the 
union of the top 10 would only include 14 separate classes. 

Most Frequently Executed By Large Class 

Table VII contains the union of the three largest classes for 
each program. In both static and dynamic frequency, loads 
and stores make up the largest class of instructions by far. 
Next in frequency in the dynamic data are the conditional 
branches. Compares and tests also have a high dynamic fre­
quency. Calls have a high frequency, but not as high as in 
static. Probably the most surprising result is that in programs 
that have a lot of shifts to begin with (statically), the dynamic 
frequency of the shifts is even higher. 

Table VI-Union of the top ten classes (dynamic) showing % of 
executed instructions 

Class Chess Editor Monitor Mopet M6839 

Load 8-bit 19.20 11.87 10.10 8.04 8.76 
Branch if equal 9.93 6.56 1.44 12.07 .59 
Load 16-bit 7.81 8.80 10.41 7.35 2.05 
Load eff. addr. 5.06 4.82 3.72 10.95 2.92 
Store 8-bit 4.85 5.01 1.49 2.19 4.22 
Store 16-bit 4.23 3.58 3.29 4.26 1.88 
Branch if not = 4.21 9.32 2.68 6.99 3.80 
Bit test 3.49 0 .59 .32 .01 
Branch if minus 3.22 .06 .06 .04 .03 
Increment 2.89 .46 1.48 .32 .92 
Compare 8-bit 2.74 13.18 6.56 8.68 9.35 
Jump to subr. 2.64 6.45 3.29 2.60 .05 
Push 2.19 3.37 4.20 1.45 1.55 
Return from subr. 1.97 3.04 4.90 2.48 2.30 
Pull 1.84 2.49 3.90 .77 .95 
Compare 16-bit 1.40 5.62 1.39 11.63 1.25 
Decrement 1.21 0 .08 .44 4.97 
Branch always .95 6.47 .64 4.64 6.20 
Branch less than .19 .09 0 .01 5.62 
Branch higher/same .11 .27 .30 3.10 1.68 
Branch lower .07 .41 3.56 1.68 .27 
Long branch subr. .04 .73 5.15 1.78 1.15 
Rotate left .02 .08 .06 .09 10.96 
Rotate right 0 0 3.77 0 10.63 

Other 19.74 7.32 26.94 8.12 16.01 

Table VII-Union of the top three largest classes (dynamic) 

Class Chess Editor Monitor Mopet M6839 

Load 27.01 20.67 20.51 15.40 10.81 
Condo branch 21.81 21.12 9.24 24.76 15.86 
Store 9.08 8.59 4.78 6.46 6.10 
Cmpltest 6.07 18.97 8.32 22.14 12.63 
Call 3.18 7.18 10.66 5.54 2.97 
Shifts 0.33 0.16 9.50 0.45 23.33 

To a user trying to select a microprocessor, these data indi­
cate that the speed of the loads, stores, and branches will have 
a very large impact on the throughput. The speed of the 
addressing modes will directly affect the speed of the loads 
and stores. Furthermore, the speed of the arithmetic (except 
compare) and logical instructions is almost irrelevant to 
throughput. 

Dynamic Execution of Addressing Modes 

This section presents the dynamic addressing-mode data 
collected by the simulator. Table VIII contains the frequency 
of execution of the various addressing modes for the five 
programs. 

In 'ail five programs indexed addressing is by far the most 
executed addressing mode. In fact, its dynamic frequency is 
about 10% higher than its static frequency for the same 
programs. Short relative addressing is a strong second with 
immediate addressing third. If a future architect were look­
ing to improve the performance of the M6809, it would be 
advantageous to look at speeding up relative and indexed 
addressing. Indirect addressing is rarely used. 

Indexed Addressing Dynamic Statistics 

Since the frequency of indexed addressing is so high, it is 
worthwhile to see how indexed addressing is being used dy­
namically. Table IX contains the indexed addressing break­
down for the five programs analyzed. The 5-bit and no-offset 
indexed addressing are by far the most frequently executed. If 
it were possible to make these faster, it would certainly im-

Table VIII-Dynamic addressing mode usage 

Mode Chess Editor Monitor Mopet M6839 

Indexed 40.79 33.74 29.76 31.05 41.46 
Short relative 22.23 27.48 12.09 30.46 23.78 
Immediate 14.23 18.47 15.46 12.12 11.49 
Inherent 7.21 9.77 23.19 5.77 6.73 
Extended 3.90 8.93 3.29 2.90 0.24 
Direct 8.33 0.00 0.00 14.29 0.00 
Long relative 1.08 0.88 5.18 1.98 1.27 
Accumulator a 1.51 0.09 10.33 0.84 9.07 
Accumulator b 0.72 0.64 0.70 0.59 5.95 

Indirect 0.69 0.00 0.00 0.04 0.15 

From the collection of the Computer History Museum (www.computerhistory.org)



Table IX-Dynamic indexed addressing statistics 

Addr Mode Chess Editor Monitor Mopet M6839 

No offset 17.03 23.34 7.47 45.95 10.96 

5-bit offset 62.00 39.80 37.82 37.35 62.32 
8-bit offset 2.30 0.01 0.00 0.22 2.55 
16-bit offset 6.77 0.01 0.00 1.21 0.00 
8-bit off. on PC 0.00 0.06 11.21 0.02 0.14 
16-bit off. on PC 0.00 0.02 0.00 0.23 1.53 

Auto incr. by 1 2.70 34.76 21.26 6.78 1.68 
Auto incr. by 2 1.57 1.46 0.00 3.06 0.06 
Auto decr. by 1 1.15 0.02 0.05 4.26 0.19 
Auto decr. by 2 1.60 0.00 0.00 0.00 0.38 

a acc. offset 3.34 0.08 11.06 0.37 3.91 
b acc. offset 0.35 0.00 0.00 0.26 15.93 
d acc. offset 0.42 0.43 11.13 0.27 0.35 

Extended indirect 0.77 0.00 0.00 0.00 0.00 

prove the M6809's performance. Auto increment by 1 is used 
fairly often in an executing program. This is expected since 
almost all auto increments and decrements are in loops. 

SUMMARY 

As is the case with most Von Neuman architectures, only a 
few single opcodes make up a large percentage of all the 
instructions that appear statically. For the M6809, the top 20 
opcodes accounted for over 58% of all the instructions. Three 
new M6809 instructions headed up the list of the most fre­
quently appearing single opcodes. They were long branch to 
subroutine, load effective address, and push on the S stack. 
The rest of the top 20 was composed of loads, stores, branch­
es, compares, subroutine calls, and subroutine returns. 

In larger classes of instructions, the following statistics were 
the approximate static values for the top five classes: 

1. Loads and stores =36% 
2. Subroutine calls = 12% 
3. Conditional branches =10% 
4. Pushes and pulls 8% 
5. Load effective address = 6% 

The arithmetic and logical instructions occurred infrequently. 
Thus, the loads, stores, subroutine calls and conditional 

branches are a better metric of memory efficiency than are the 
arithmetic and logical instructions. 

M6809 Instruction Set Analysis 511 

The static addressing-mode data indicate that the most 
common addressing mode is indexed (30%), followed by rel­
ative (24%), and by immediate (20%). The number of direct 
and extended instructions combined was only 10%. Indirect 
was practically never used. 

In the static indexed addressing data we find that 5-bit and 
no-offset indexed account for 66% of all indexed instructions. 
Including the 8-bit, 16-bit, 8-bit program counter relative 
mode and the 16-bit program counter relative mode, we find 
86% of the indexed instructions are constant offset or have no 
offset. 

. This indicates to future architects that having several effi­
cient, simple offset indexed forms is beneficial. The M6809 
has six such forms as compared to the M6800's one. 

The average number of bytes added for each indexed in­
struction is 1.17 bytes. 

There was a larger variation in the dynamic data. There are 
two reasons for this. One is that I had fewer dynamic data 
points. The other is that dynamic data seem to be more de­
pendent on the application and programmer style. 

The average number of cycles for an M6809 instruction is 
approximately 4.75. This gives a throughput of .423 MIPS 
with a 2-MHz M6809. 

By classes, the conditional branches all combined to form 
the second most-executed group, second only to the loads and 
stores. The other large classes were compare and test, the 
calls, and the shifts. 

In dynamic execution the indexed addressing mode ac­
counts for approximately 35% of all addressing modes. Short 
relative is about 25%, and immediate is 15%. Long relative 
addressing usage is fairly low. Indirect is the big loser again. 

In indexed addressing, the offset varieties accounted for 
72%. This is down from the static data, but is stilljmpressive. 
Auto increment and the accumulator offsets make up most of 
the rest of the indexed data. 

The dynamic data reinforce the conclusions from the static 
analysis that a good measure of the overall efficiency of an 
architecture is best found in the loads, stores, conditional 
branches, subroutine calls, and addressing modes. This coin­
cides with the modern view that computers spend most of 
their time in moving data around and making decisions based 
on the data rather than in number crunching. 

REFERENCES 

1. Boney, Joel. "Analysis of the M6809 Instruction Set," Report, University of 
Texas Computer Science Department. 

2. Stone, Harold S. (ed.). Introduction to Computer Architecture. Science Re­
search Associates, 1975, pp. 525-528. 

3. Shustek, Leonard J. "Analysis and Performance of Computer Instruction 
Sets," Stanford Linear Accelerator Center Report No. 205, STAN-CS-78-
658, January 1978. 

From the collection of the Computer History Museum (www.computerhistory.org)



From the collection of the Computer History Museum (www.computerhistory.org)




